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Abstract. We generalise the arguments given in a preceding letter by the present authors 
to give a sufficient condition for the existence of the spontaneous magnetisation in the 
random-bond Ising model on the square lattice. We study in detail the system with a 
Gaussian distribution of exchange interaction, the system with the exchange interactions 
J > 0, 0 and -J, and the system with the exchange interactions Ja > 0 and -JB < 0. It is 
shown that in each of these systems the ferromagnetic phase certainly exists in a region 
in the space of the parameters describing the probability distribution of the exchange 
interaction at sufficiently low temperatures. The general condition for the existence of 
the ferromagnetic phase is given for the system without specifying the form of the 
probability distribution of the exchange interaction. 

1. Introduction 

The quenched random-bond Ising model with competing interactions has been of 
great interest for years because there is a possibility that the antiferromagnetic 
interactions destroy the ferromagnetic long-range order and induce the spin glass state 
(Edwards and Anderson 1975, Sherrington and Kirkpatrick 1975, Matsubara and 
Sakata 1976, Domb 1976). It has been proved recently that the destruction of the 
ferromagnetic long-range order due to the antiferromagnetic interactions certainly 
happens at p < 0.7071 for the random-bond Ising model on the square lattice where 
the exchange interactions J > 0 and -J have the respective probabilities p and 1 - p  
(Horiguchi and Morita 1981). If the effects of the antiferromagnetic interactions are 
not so strong, the ferromagnetic order clings to the system at sufficiently low tem- 
peratures. This has been proved for the system by extending Peierls’ and Griffiths’ 
arguments (Peierls 1936, Griffiths 1964, 1972) by Avron et a1 (1981) and indepen- 
dently by the present authors (Horiguchi and Morita 1982a) who were stimulated by 
Nishimori’s work (1981). The discussions have been extended to a random-site Ising 
model on the square lattice (Morita and Horiguchi 1982). 

In the present paper, we investigate in detail the condition on the existence of 
the ferromagnetic phase in the random-bond Ising model on the square lattice for 
several types of the probability distribution of the exchange interaction. We consider 
the system in which the probability distribution is the Gaussian distribution. We also 
consider the system in which exchange interaction is assumed to take on J > 0, 0 and 
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-J with respective probabilities p ,  r and 1 - p  - r or on J A >  0 and -JB < 0 with 
respective probabilities p and 1-p. We show that in each of these systems the 
ferromagnetic long-range order certainly appears in a region of the space of the 
parameters describing the probability distribution of exchange interaction at 
sufficiently low temperatures. We discuss also the general condition for the existence 
of the ferromagnetic phase in the system without specifying any particular form for 
the probability distribution of the exchange interaction. 

2. General formalism 

In this section, we generalise the formalism given in the previous letter (Horiguchi 
and Morita 1982a) in which we extend Peierls’ and Griffiths’ arguments (Peierls 1936, 
Griffiths 1964, 1972) for the regular Ising model to those for the random-bond Ising 
model with the exchange interactions J > 0 and -J. We discuss the possibility for the 
existence of the ferromagnetic phase in the system with the general type of the 
probability distribution of the exchange interaction. 

We consider a random-bond Ising model on a square lattice .I. The total number 
of lattice sites is denoted by N .  The Hamiltonian of the system is defined by 

where s, is the spin variable for site i and takes on the values i l  and h is the external 
field. The first summation on the right-hand side is taken over all nearest-neighbour 
pairs of sites, which are called bonds. JIj are the exchange interactions which are 
quenched random variables and whose probability distribution is denoted by P(J,,) 
and assumed to be independent of the J k l  for the other bonds ( k l ) .  We denote the 
configurational average of a quantity Q{J,,}, which depends on the set {J,,}, by angular 
brackets with a suffix c: 

We assume for the exchange interaction that (lJ,jl)c is finite. This condition is necessary 
for the existence of the thermodynamic limit of the free energy in the system (Horiguchi 
and Morita 1982a). 

The magnetisation of the system given by (2.1) is defined by 

(2.3) 

where p = l / k T  as usual and k is Boltzmann’s constant. Here the suffix B means a 
boundary condition imposed on the system. We consider the boundary condition BO 
that the boundary spins are not coupled with the outer system and the one B1 that 
the boundary spins are forced to align upwards. We then have the following inequality 
(Horiguchi and Morita 1982a) 
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where 
1 

m, = lim lim - ((Si)h,Bo)c 
h-+O N-m N i E A  

and 
1 

N-m N i e A  
mB,(h = 0) = lim - C ( (S i )O,Bt)c .  

Equation (2.6) is expressed as follows 

1 
mB,(h = 0) = 1 - 2 lim - ( ( N - ) o , B ~ ) ~  

N + m  N (2.7) 

where N-  is the total number of sites with down spins in the system. When we draw 
lines bisecting nearest-neighbour pairs of sites i and j when si is + 1  on the site i and 
sj is -1 on the other site j in a spin configuration { s i }  of the system, these lines form 
closed polygons under the boundary condition B1 (Peierls 1936, Griffiths 1964,1972). 
We introduce a function Xi: which takes the value 1 if the Ith polygon of perimeter 
2n occurs in a spin configuration and 0 otherwise. Then we have 

v(2n) is the number of different polygons of perimeter 2n in the system and is 
estimated as follows (Griffiths and Lebowitz 1968, Horiguchi and Morita 1982a): 

v(2n) s (9"-'/n)N. (2.9) 

The thermal average of XgL is expressed as 

where 

(2.10) 

(2.11) 

j E A 

Here Li is the set of sites j which are on the boundary of the lattice A. The sum in 
the denominator is taken over all the spin configurations satisfying the boundary 
condition, but the sum in the numerator only over all the configurations in which the 
Zth polygon of perimeter 2n appears. We restrict the sum in the denominator to the 
configurations that appear in the numerator and to those that are generated from 
these spin configurations by reversing all the spins inside the polygon. Then we have 
an upper bound to (XfL)o,B1. After taking the configurational average, it reads 

(2.12) 

where Z'(2n) is the set of nearest-neighbour pairs of sites ( i j )  which are situated across 
the periphery of the polygon of perimeter 2n. The right-hand side of (2.12) does not 
depend on the suffix 1 any more. We have from equation (2.8) 
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As a sufficient condition for the existence of the ferromagnetic phase we have that 
the right-hand side of equation (2.13) is less than 3. 

We overestimate (Xy!,)o,B, by 1 when the sum of the exchange interactions along 
the periphery of the polygon is negative and by exp (-2p &j)E2i2nlJij) otherwise. 
Then we have 

The first series on the right-hand side of equation (2.14) converges when the following 
inequality is satisfied 

(2.15) f ( t o )  = (exp (-tJl, ))c < + 
when to is a positive solution of the equation 

(Jz, exp (-fJl,))c = 0. (2.16) 

When equation (2.16) does not have a positive solution, the first term on the right-hand 
side of equation (2.14) never converges. We notice here that the function f ( t )  is a 
convex function and there is only one real solution of equation (2.16) if it exists. 
When the probability distribution P(J,,) takes the form S (J,, -Jo)  with Jo > 0 in some 
limiting values of the parameters describing the probability distribution, there is a 
range of parameters in which the ferromagnetic state certainly occurs in the ground 
state. 

The second series on the right-hand side of equation (2.14) converges under the 
condition 

(exp [ ( t l -2~)~ , ,1 ) ,<3  (2.17) 

when t l  is a positive solution of the equation 

(Jl, exp [ ( t l -  2P)Jl,l)c = 0 (2.18) 

or under the condition 

(exp (-~PJ,, ))c < f (2.19) 

when equation (2.18) has no positive solution. The condition (2.17) is equivalent to 
the one (2.15) for t o ~ 2 p  and the condition (2.19) includes the one (2.15) for to22P. 
Thus at finite temperatures, the right-hand side of equation (2.14) converges under 
the conditions that either equation (2.15) for toS2p or equation (2.19) for toa2P is 
satisfied. When the probability distribution is given by S U I ,  -Jo)  with JO > 0, equation 
(2.16) has a solution to= +a which is greater than 2p. Then (2.19) applies, that is 
equation (2.14) converges when kT/Jo<  2/log 3 (Griffiths 1964). 

We investigate in detail the condition that equation (2.13) or (2.14) is less than $ 
for several types of the probability distribution P(J,,) in the following sections. 
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3. Gaussian distribution 

We consider the system (2 .1)  in which the probability distribution of the exchange 
interaction is the Gaussian distribution 

where j is the mean and U is the standard deviation. We assume > 0 and set x = j/u. 
This system was studied by Klein et a1 (1979) in terms of the self-consistent mean- 
random-field approximation. An exact lower bound to the critical ratio xE below 
which there is no spontaneous magnetisation was given by the present authors 
(Horiguchi and Morita 1982b, c). Its value is 0.494 for the square lattice. 

From equation (2.12),  we have 

where we put a = 2J5up and y =f/&u. We make in equation (3 .3)  a transforma- 
tion from the set of variables { t i jI( i jk2?(2n)}  to the set of variables {u jb  = 1 , 2 ,  . . . , 2 n }  
under the conditions that Z tij = J2n u l ,  Z ti. = Z uf  and the Jacobian of the transfor- 
mation is equal to 1 .  Then we carry out the integration in (3 .3)  except the one for 
u t  and we have 

e-"t{1+exp[a(J%u1+2ny)])-' dul. (3 .4)  
1 "  ((xt!t )O,Bl)c J, I-, 

We overestimate the second factor ofhe integrand by 1 when ul<-J%y and by 
exp [ -a(J2nu1+2ny)]  when u1> - J2ny and then we have 

(3 .5)  ((xi': )O,Bl)c s f erfc (4G.x) + f exp [4n ( 1 / y 2  - x / y  11 erfc [ 4 2 / y  - x ) ]  

where y = l / u p  and erfc(z) is the error function (Magnus et a1 1966). Then we have 

The above equation is also obtained from equation (2.14) by using successively the 
identity 

m 

dz e-L2 erfc (az + b)  = d i  erfc [ b / ( a 2 +  1)1'2] I, (3.7) 
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or by using the same transformation of variables leading to equation (3.4) from 
equation (3.3). 

We have the following inequality for the error function 

2 

(3.8) 
22 -1 - 2 2  1 - 2 2  < erfc (2) < - e . 
2 J 2  e J T Z  

By using this inequality, we have the condition that each series in equation (3.6) 
converges. At T = 0, we find the condition x > 42  log 3. At finite temperatures, the 
right-hand side of equation (3.6) converges for the union of the sets of points 
{x ,  y Ixy s 2, x > J 2  log 3) and {x, y lxy 3 2, y 2  log 3 - 2xy + 2 < 0). These conditions 
are also obtained from equation (2.15) for tos2/3 and equation (2.19) for t0>2/3 
where to = x/a. 

We perform numerical calculations to find the region in the j / a  - k T / a  plane 
where the ferromagnetic phase certainly occurs. We investigate the condition that 
the right-hand side of (3.6) is less than 4 and show the boundary by the bold full curve 
in figure 1. There certainly exists the ferromagnetic phase to the right of the line. 
The ferromagnetic ground state occurs for x > 1.49. The light full curve was obtained 
in the previous papers (Horiguchi and Morita 1982b, c) and shows that there is no 
spontaneous magnetisation to the left of the line. The broken line shows the Curie 
temperature in the molecular field approximation for the regular Ising model with 
the exchange interaction 7 > 0. 

4. Discrete distribution 

In this section, we consider the system in which the exchange interaction takes on the 
values J A  > 0, 0 and - J B  < 0 with respective probabilities p ,  r, and 1 - p - r :  

In the case of J A = J B = J ,  the system was studied by several authors in order to 
investigate the effects of percolation on spin glass phase (e.g. Giri and Stephen 1978, 
Southern et a1 1979 etc). The present authors showed that there is no spontaneous 
magnetisation at T = 0 when the following inequality is satisfied (Horiguchi and Morita 
1981, 1982b) 

p < (1 - r ) / [ l +  (45- I )~ ' ( ' -~ ' ] .  (4.2) 

In the case of r = 0 in equation (4.1), the system was studied in the Bethe approximation 
(e.g. Matsubara and Sakata 1976, Katsura et a1 1979 etc). 

We assume that a polygon of perimeter 2n is made of lines bisecting 1 bonds with 
the exchange interaction J A ,  m bonds with the zero exchange interaction and 2n - I - m 
bonds with -JB. We then have from equation (2.13) 

(4.3) 
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I 
1 
I 

2 
j l 0  

Figure 1. The random-bond Ising model on the square lattice with Gaussian distribution. 
The right of the bold full curve is the region where spontaneous magnetisation exists. 
The left of the light full curve is the region where there is no spontaneous magnetisation. 
The broken line indicates the Curie temperature in the molecular field approximation for 
the ferromagnetic king model with the exchange interaction 

In the case of J A  =.IB = J, we have from (2 .14)  

where lo = [n - m / 2 ] ;  [ a ]  denotes the greatest integer not greater than a .  By using 
Cauchy's test for convergence, we have that the right-hand side of equation (4 .4)  
converges under the conditions 

p ~ ( l - r ) / ( l + e - ~ ' ~ )  and p > $ ( l - r ) + & 6 %  (4 .5 )  

or 

1 - r  ~ = p  a(1 - r ) / ( 1  +e-4PJ) and p > [ 1 - r + e-2PJ( r -$)I/ ( 1  - e-4PJ) (4 .6 )  
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where 0 s r < $. In the case of r = 0, we have from (2.14) 

where lo = [2dB/(JA+JB)]. The right-hand side of equation (4.7) converges by 
Cauchy's test under the conditions 

or 
p 3 JB/{JB + JA exp [-2p (JA + JB)]} 

p > (1 - f  e-2PJB)/{1 -exp [-2p(JA +JB)]}. 

and 
(4.9) 

These conditions (4.5) and (4.6), and (4.8) and (4.9) are also obtained from the general 
conditions given in § 2. The general convergence conditions for the probability 
distribution (4.1) are obtained from those inequalities (2.15) for t o <  2p, and (2.19) 
for to  3 2p where t o  = log {pJA/(1 - p  - r)JB}/(JA +JB). 

The numerical calculations of finding the region that the right-hand side of (4.3) 
is less than are performed for the case of JA = JB = J and for the case of r = 0, 
respectively. The results obtained are given by bold full curves in figure 2 for the case 
of JA = JB = J and in figure 3 for the case of r = 0. On the lower-temperature side of 
the full curves in these figures, the spontaneous magnetisation certainly exists in each 
case. In figure 2, we also give the results obtained in the previous papers (Horiguchi 
and Morita 1981, 1982b) by the lkh t  full curve for each value-of r which consists of 
two straight lines k T / J  = 4 log (42 - 1)  and p = (1 - r) / [ l+  (J2 - l)l''l-r)]. There is 
no spontaneous magnetisation on the higher-temperature side and lower-p side of 
these lines. 

5. Concluding remarks 

We proved that the ferromagnetic state certainly appears in a region in the space of 
parameters describing the probability distribution of exchange interaction at 
sufficiently low temperatures for the random-bond Ising model on the square lattice 
when the probability distribution is given by a Gaussian distribution, the discrete 
distribution with J > 0, 0 and -J or the one with JA > 0 and -JB < 0. The results can 
be extended to the case of the antiferromagnetic state. We divide the lattice sites 
into two sublattices, replace the spin variables s, on the sites belonging to one of 
the sublattices by -si and invert the direction of the external field on these sites. Then 
we can show that the system is the antiferromagnetic state if the system is ferromagnetic 
whenj/ila < 0 is replaced by IJI/cT for the Gaussian distribution and when the concentra- 
tion of the ferromagnetic interaction is equal to 1 - p  - r for the discrete distribution. 

We are able to extend the present results to the systems on other two-dimensional 
lattices. The number v(6) of polygons of perimeter 6 is overestimated by 

~ ( 6 ) s  [ z ( z  - l)b-2/26]Nd (5.1) 
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P 

Figure 2. The random-bond king model on the square lattice with exchange interaction 
J > 0, 0 and -J with respective probabilities p, r and 1 - p  - r. The lower temperature 
side of the bold full curves shows that spontaneous magnetisation exists. On the outside 
of the light full lines, there is no spontaneous magnetisation. 

P 

Figure 3. The random-bond Ising model on the square lattice with exchange interaction 
J A >  0 and - J B < O  with respective probabilities p and 1 - p .  There exists the spontaneous 
magnetisation on the low-temperature side of the full curve for each value of the ratios 
JB/Jc,=0,0.01,0.1,0.2,0.5, 1.0and2.0.  
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where z is the number of the nearest-neighbour lattice sites and Nd is the total number 
of lattice sites in the dual lattice. For the triangular lattice, we have Nd = 2 N :  N is 
the total number of lattice sites in the original lattice. Each closed polygon with 
perimeter 6 encloses at mQst ( b 2 +  12)/48 lattice sites. Then we have in place of (2.13) 

For the honeycomb lattice, we have Nd = N/2. Each closed polygon with perimeter 
b encloses at most 6'/6 lattice sites. Then we have in place of (2.13) 

After deriving each inequality corresponding to equation (2.14) from ( 5 . 2 )  or (5 .3) ,  
we obtain the general conditions for the convergence. When equation (2.16) has a 
positive solution to ,  we have for 2p 3 to  

(5.4) (exp ( - r J l , ) L <  l / i z  - 1) 

(exp ( -  WI1~)L< l!(z - 1). 

and for 2p c to 

( 5 . 5 )  

Extension of the present results is also possible to random-bond Ising models on 
the higher-dimensional lattices. Extension to a random-site Ising model will be 
discussed in a separate article. 
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